A note on fluctuating heat transfer at small Péclet numbers

By C. R. ILLINGWORTH
Department of Mathematics, University of Manchester

(Received 29 June 1959)

1. Introduction

The hot-wire anemometer, used for recording speed variations in turbulent flow, involves in its working principle the unsteady heat transfer from a hot fixed surface to a fluctuating air stream moving past the surface. If the wire is maintained at a constant (high) temperature, the rate of loss of heat from the wire changes with the velocity of the incident stream, and the compensating rate of gain of heat, produced by the Joule heating effect of the electric current, changes correspondingly. The accompanying change of current can be measured, and used to calculate the varying velocity of the air stream. The hot wire may have a diameter as low as $10^{-4} \mathrm{in}$. and the Reynolds number of the flow is then of the order of 0.05 for each ft . per sec of velocity. With low velocities, of the order of 10 or 20 ft ./sec, the flow past the wire is in the range of small Reynolds number, and the exact equations of flow may be approximated by simpler equations in the manner of Oseen's theory (Lamb 1932). The approximate equations are not easy to solve when the flow is compressible, as it will be in the presence of the large temperature differences imposed by the heat of the wire. If, however, the temperature differences are assumed to be small, the approximate energy equation is no longer linked with the equations of continuity and momentum, and it may be solved without knowledge of the velocity field. The purpose of this note is to give the solution for the temperature field when a warm circular cylinder or a warm sphere is held at rest in a fluctuating stream.

2. The temperature equation

The energy equation from which we start may be written as

$$
\begin{equation*}
\rho \frac{D}{D t}\left(c_{p} T\right)=\operatorname{div}(\lambda \operatorname{grad} T), \tag{I}
\end{equation*}
$$

where t is the time, ρ the density, T the temperature, c_{p} the specific heat at constant pressure, and λ the thermal conductivity. This equation differs from the exact energy equation, for a compressible fluid, in the omission of the rate of working of the pressure forces and the rate of heat production through the action of viscosity. The weights of these omitted terms are in the ratio $M^{2}:(\chi-1)$ compared with the terms retained, where M is the Mach number of the free stream and χ is T_{w} / T_{∞}, the ratio of the temperatures of the obstacle and the free stream. In quoting (1) we have assumed that $M^{2} \ll(\chi-1)$, and we now go further and
assume also that $\chi-1 \ll 1$ so that temperature differences in the flow are small. This allows us to neglect density variations and to regard λ as a constant, so that (1) becomes

$$
\begin{equation*}
\frac{D T}{D t}=\kappa \nabla^{2} T, \tag{2}
\end{equation*}
$$

where κ is the thermometric conductivity. If the stream is slow moving, (2) can be replaced by the Oseen-type equation

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+U_{\infty} \frac{\partial}{\partial x}\right) T=\kappa \nabla^{2} T \tag{3}
\end{equation*}
$$

in which U_{∞} is the velocity of the free stream and x is the Cartesian co-ordinate in the direction of U_{∞}. In this equation, the convection term $v . g r a d ~ T r o m ~(2) ~ h a s ~$ been replaced by its form at infinity; if it is omitted altogether, on the grounds that \mathbf{v} and $\operatorname{grad} T$ are both small, the Stokes-type equation

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\kappa \nabla^{2} T \tag{4}
\end{equation*}
$$

is obtained, but this yields a solution for a circular cylinder that cannot satisfy the boundary condition at infinity.

We may notice at this point that if we introduce non-dimensional variables

$$
\begin{equation*}
\tilde{t}=\omega t, \quad \tilde{x}=P x / l, \tag{5}
\end{equation*}
$$

in which ω is a representative frequency in the fluctuating motion, l is a representative length, and P is the Péclet number $U l / \kappa$, where U is a representative velocity, then (3) becomes

$$
\begin{equation*}
\frac{\omega \kappa}{U^{2}} \frac{\partial T}{\partial t}+\frac{U_{\infty}}{U} \frac{\partial T}{\partial \tilde{x}}=\tilde{\nabla}^{2} T \tag{6}
\end{equation*}
$$

This shows that (3) stands as the appropriate form of the energy equation provided $\omega \kappa / U^{2}$ is $O(1)$, but that if ω is very small the term $\partial T / \partial t$ can be omitted (the quasi-steady case), and if ω is very large the term $U_{\infty} \partial T / \partial x$ is negligible so that the equation reduces to Stokes's form. If we denote the Reynolds number $U l / \nu$ by R, and the Prandtl number by σ, the Péclet number P is σR. For air, with $\sigma=0.72$, smallness of the Reynolds number implies smallness of the Péclet number, but, as (5) and (6) indicate, it is the Péclet number and not the Reynolds number which is the fundamental parameter in this problem.

We shall now assume that the free stream is fluctuating in simple harmonic motion about a mean value U with a small amplitude and an angular frequency ω, so that

$$
\begin{equation*}
U_{\infty}=U\left(1+\epsilon e^{i \omega l}\right), \tag{7}
\end{equation*}
$$

where $\epsilon \ll 1$. If the temperature is expressed in terms of a function f by the relation

$$
\begin{equation*}
T=T_{\infty}[1+(\chi-1) f], \tag{8}
\end{equation*}
$$

equation (3) becomes $\quad \frac{\partial f}{\partial t}+U\left(1+\varepsilon e^{i \omega t}\right) \frac{\partial f}{\partial x}=\kappa \nabla^{2} f$,
and f must satisfy the boundary conditions: $f=1$ on the obstacle, $f \rightarrow 0$ at infinity.

It is appropriate to write

$$
\begin{gather*}
f=f_{0}+\epsilon e^{i \omega l} f_{1}, \tag{10}\\
\left(\nabla^{2}-2 k \frac{\partial}{\partial x}\right) f_{0}=0 \tag{11}\\
\left(\nabla^{2}-2 k \frac{\partial}{\partial x}-\frac{i \omega}{\kappa}\right) f_{1}=2 k \frac{\partial f_{0}}{\partial x}, \tag{12}
\end{gather*}
$$

where f_{0}, f_{1} satisfy
in which $k=U / 2 \kappa$. Finally, with the substitutions

$$
f_{0}=e^{k x} g_{0}, \quad f_{1}=e^{k x} g_{1}
$$

equations (11) and (12) reduce to

$$
\begin{gather*}
\left(\nabla^{2}-k^{2}\right) g_{0}=0 \tag{13}\\
{\left[\nabla^{2}-\left(k^{2}+i \omega / \kappa\right)\right] g_{1}=2 k\left(\frac{\partial g_{0}}{\partial x}+k g_{0}\right)} \tag{14}
\end{gather*}
$$

with the boundary conditions:

$$
\begin{gather*}
g_{0}=e^{-k x}, \quad g_{1}=0, \quad \text { on the obstacle, } \tag{15}\\
g_{0} \rightarrow 0, \quad g_{1} \rightarrow 0, \quad \text { at infinity } \tag{16}
\end{gather*}
$$

3. Circular cylinder

In plane polar co-ordinates r, θ, the appropriate solution of (13) is

$$
\begin{equation*}
g_{0}=\sum_{m=0}^{\infty} a_{m} K_{m}(s) \cos m \theta \tag{17}
\end{equation*}
$$

where the a_{m} are constants to be determined, K_{m} is a Bessel function in the usual notation (Watson 1944) and $s=k r$. The function g_{0} must be a single-valued even function of θ that vanishes for large r. From the boundary condition (15),

$$
\begin{equation*}
\sum_{m=0}^{\infty} a_{m} K_{m}\left(s_{0}\right) \cos m \theta=e^{-s_{0} \cos \theta} \tag{18}
\end{equation*}
$$

where $s_{0}=k a$, and a is the radius of the cylinder; and since
it follows that $\quad a_{m}= \begin{cases}I_{0}\left(s_{0}\right) / K_{0}\left(s_{0}\right) & (m=0), \\ 2(-1)^{m} I_{m}\left(s_{0}\right) / K_{m}\left(s_{0}\right) & (m \geqslant 1) .\end{cases}$
Equation (14) in polar co-ordinates is
where

$$
\begin{gather*}
\left(\nabla^{2}-\alpha^{2} k^{2}\right) g_{1}=2 k^{2}\left[\cos \theta \frac{\partial g_{0}}{\partial s}-\frac{\sin \theta}{s} \frac{\partial g_{0}}{\partial \theta}+g_{0}\right] \\
=2 k^{2} \sum_{m=0}^{\infty} A_{m} K_{m}(s) \cos m \theta \tag{20}\\
A_{m}=\left\{\begin{array}{cc}
\frac{1}{s_{0} K_{0}\left(s_{0}\right) K_{1}\left(s_{0}\right)} & (m=0) \\
\frac{2(-1)^{m+1} K_{m}^{\prime}\left(s_{0}\right)}{s_{0} K_{m-1}\left(s_{0}\right) K_{m}\left(s_{0}\right) K_{m+1}\left(s_{0}\right)} & (m \geqslant 1)
\end{array}\right. \tag{21}
\end{gather*}
$$

Also

$$
\begin{equation*}
\alpha^{2}=1+\frac{i \omega}{k^{2} \kappa}=1+\frac{4 i h}{P} \tag{22}
\end{equation*}
$$

in which h is the frequency parameter $\omega l / U$; in the present case, $l=2 a$. The required solution of (20), vanishing at $s=s_{0}$ and $s=\infty$, is

Since

$$
\begin{equation*}
g_{1}=\frac{i P}{2 h} \sum_{m=0}^{\infty} A_{m}\left[K_{m}(s)-\frac{K_{m}\left(s_{0}\right)}{K_{m}\left(\alpha s_{0}\right)} K_{m}(\alpha s)\right] \cos m \theta \tag{23}
\end{equation*}
$$

$$
e^{s \cos \theta} \cos m \theta=I_{m}(s)+\sum_{n=1}^{\infty}\left[I_{m-n}(s)+I_{m+n}(s)\right] \cos n \theta
$$

we obtain

$$
\begin{equation*}
f_{0}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{m} F_{m n}(s, s) \cos n \theta \tag{24}
\end{equation*}
$$

where

$$
F_{m n}(\xi, \eta)= \begin{cases}K_{m}(\xi) I_{m}(\eta) & (n=0) \tag{25}\\ K_{m}(\xi)\left[I_{m-n}(\eta)+I_{m+n}(\eta)\right] & (n \geqslant 1)\end{cases}
$$

and

$$
\begin{equation*}
f_{1}=\frac{i P}{2 h} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m}\left[F_{m n}(s, s)-\frac{K_{m}\left(s_{0}\right)}{K_{m}\left(\alpha s_{0}\right)} F_{m n}(\alpha s, s)\right] \cos n \theta \tag{26}
\end{equation*}
$$

This completes the required solution for the temperature distribution.
It remains to determine the fluctuating heat transfer from the cylinder to the stream. The total heat flux per unit length from the cylinder is

$$
Q=-\int_{0}^{2 \pi} \lambda\left(\frac{\partial T}{\partial r}\right)_{r=a} a d \theta
$$

and the corresponding Nusselt number, defined as
is given by

$$
C_{q}=\frac{Q}{2 \pi a\left[\lambda\left(T_{w}-T_{\infty}\right) / 2 a\right]},
$$

$$
C_{q}=-\frac{k a}{\pi} \int_{0}^{2 \pi}\left(\frac{\partial f}{\partial s}\right)_{s=s_{0}} d \theta
$$

It follows that

$$
\begin{equation*}
C_{q}=C_{q 0}+\epsilon e^{i \omega t} C_{q 1} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{q 0}=2\left[\frac{I_{0}\left(s_{0}\right)}{K_{0}\left(s_{0}\right)}+2 \sum_{m=1}^{\infty}(-1)^{m} \frac{I_{m}\left(s_{0}\right)}{K_{m}\left(s_{0}\right)}\right], \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{q 1}=-\frac{i P^{2}}{4 h} \sum_{m=0}^{\infty} A_{m} K_{m}\left(s_{0}\right) I_{m}\left(s_{0}\right)\left[\frac{K_{m}^{\prime}\left(s_{0}\right)}{K_{m}\left(s_{0}\right)}-\frac{\alpha K_{m}^{\prime}\left(\alpha s_{0}\right)}{K_{m}\left(\alpha s_{0}\right)}\right] \tag{29}
\end{equation*}
$$

These expressions are, however, in a more general form than the Oseen approximation warrants, for the approximation is only valid if P, which is equal to $4 s_{0}$, is small. Accordingly, we replace the Bessel functions by their series expansions for small values of the argument. If we write

$$
\begin{equation*}
\beta=\frac{P}{8} \quad \text { and } \quad L(\beta)=\left[\ln \left(\beta^{-1}\right)-\gamma\right]^{-1} \tag{30}
\end{equation*}
$$

where γ is Euler's constant, we obtain from (21)

$$
\begin{aligned}
& A_{0}=L(\beta)+\left[2-L^{2}(\beta)\right] \beta^{2}+O\left(\beta^{4}\right) \\
& A_{1}=-L(\beta)-\left[4-L^{2}(\beta)\right] \beta^{2}+O\left(\beta^{4}\right) \\
& A_{2}=2 \beta^{2}+O\left(\beta^{4}\right) \\
& A_{n}=O\left(\beta^{2 n-2}\right) \text { for } n \geqslant 3 .
\end{aligned}
$$

It follows from (28) and (29), when terms $O\left(\beta^{4}\right)$ are neglected, that

$$
\begin{align*}
& C_{q 0}=2\left\{L(\beta)-\left[4+L^{2}(\beta)\right] \beta^{2}\right\} \tag{31}\\
& \begin{aligned}
C_{q 1} & =i \frac{8 \beta}{h}\left\{L(\beta)-L(\alpha \beta)+\left[\alpha^{2} L^{2}(\alpha \beta)-L^{2}(\beta)\right.\right. \\
& \left.\left.+2\left(\alpha^{2} \frac{L(\beta)}{L(\alpha \beta)}-\frac{L(\alpha \beta)}{L(\beta)}\right)+\frac{i h}{\beta}(L(\alpha \beta)+1)\right] \beta^{2}\right\}
\end{aligned}
\end{align*}
$$

In quoting these formulae we must remember that they would be modified if the second approximation to the convection term $\mathbf{v} . \operatorname{grad} T$ in (2) were used instead of the first approximation $U_{\infty}(\partial / \partial x)$ shown in (3). To introduce the second approximation would require the calculation of the fluctuating velocity field according to Oseen's equations. Recent work improving the Oseen theory for the velocity field in steady flow past a circular cylinder (Kaplun 1957) suggests that the

$\beta\left(=\frac{1}{8} P\right)$	0.01	0.02	0.04	0.06	0.08	0.10
$C_{a 1}^{*}$	0.123	0.180	0.287	0.400	0.527	0.672
β	0.12	0.14	0.16	0.18	0.20	-
$C_{a 1}^{*}$	0.840	1.037	1.269	1.545	1.877	-

Table 1

4h/P	$0 \cdot 1$		0.2		0.4		$0 \cdot 6$		0.8		$1 \cdot 0$	
	m	δ°										
0.01	0.998	$2 \cdot 15$	0.994	$4 \cdot 27$	0.977	$8 \cdot 31$	0.952	11.97	0.923	$15 \cdot 20$	0.892	18.00
0.02	0.999	$2 \cdot 00$	0.994	$3 \cdot 97$	0.978	$7 \cdot 73$	0.955	$11 \cdot 14$	0.928	$14 \cdot 13$	0.899	16.74
0.04	0.999	1.78	0.995	$3 \cdot 53$	0.980	6.86	0.959	9.87	0.934	12.50	0.907	14.77
0.06	0.999	1.58	0.995	$3 \cdot 14$	0.982	$6 \cdot 09$	0.962	$8 \cdot 75$	0.939	11.06	0.914	13.03
0.08	0.999	1.39	0.996	$2 \cdot 76$	0.983	$5 \cdot 38$	0.965	7.67	0.943	9.66	0.920	11.33
$0 \cdot 10$	$0 \cdot 999$	$1 \cdot 20$	0.996	$2 \cdot 38$	0.984	$4 \cdot 61$	0.967	$6 \cdot 57$	0.947	$8 \cdot 24$	0.925	$9 \cdot 62$
$0 \cdot 12$	$0 \cdot 999$	1.01	0.996	1.99	0.985	$3 \cdot 84$	0.969	$5 \cdot 44$	0.950	$6 \cdot 76$	0.930	7.81
$0 \cdot 14$	0.999	0.80	0.996	1.58	0.986	$3 \cdot 02$	0.971	$4 \cdot 24$	0.953	$5 \cdot 20$	0.933	$5 \cdot 90$
$0 \cdot 16$	0.999	0.58	0.996	$1 \cdot 14$	0.987	$2 \cdot 16$	0.972	2.97	0.955	$3 \cdot 53$	0.936	$3 \cdot 86$
$0 \cdot 18$	0.999	0.34	0.997	$0 \cdot 67$	0.987	$1 \cdot 23$	0.973	1.59	0.956	$1 \cdot 73$	0.938	$1 \cdot 65$
$0 \cdot 20$	0.999	0.09	0.997	$0 \cdot 16$	0.987	$0 \cdot 21$	0.974	0.09	0.957	-0.24	0.938	-0.76

It will be noted that there is a phase lag of the heat transfer behind the velocity fluctuation, except at the two highest frequencies (in the last two columns) for the highest Péclet number quoted, for which there is a phase advance.

Table 2
leading term, $2 L(\beta)$, in $C_{q 0}$ would be modified, although only slightly for small values of β, in the next approximation. The effect on the terms in β^{2} is likely to be considerable, so we shall confine attention here to the leading terms in the expressions for $C_{q 0}$ and $C_{q 1}$. Actually the term involving β^{2} in (31) is only about 7% of the leading term for a Reynolds number of 1 in air ($\beta=0.09$), and it is an even smaller fraction for smaller Reynolds numbers. It is therefore certainly permissible to concentrate on the leading terms.

It will be convenient to introduce the quasi-steady value of the expression

$$
C_{q 1}=i \frac{8 \beta}{h}[L(\beta)-L(\alpha \beta)],
$$

obtained by letting the frequency tend to zero ($h \rightarrow 0$ and $\alpha \rightarrow 1$). This is given by
and we shall then write

$$
\begin{equation*}
C_{91}^{*}=2 L^{2}(\beta), \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
\frac{C_{q 1}}{C_{q_{1}}^{*}}=i \frac{4 \beta}{h} \frac{L(\beta)-L(\alpha \beta)}{L^{2}(\beta)}=m e^{-i \delta} \tag{34}
\end{equation*}
$$

where m is the magnification factor and δ the phase lag of the fluctuating component of the heat transfer compared with its quasi-steady value. Values of $C_{q 1}^{*}$ for a range of Péclet numbers are given in Table 1, and the values of m amd δ for various frequencies and for the same range of Péclet numbers are given in Table 2.

4. Sphere

Although it is not relevant to the hot-wire anemometer, the corresponding problem of fluctuating heat transfer from a warm sphere will now be briefly considered. With spherical polar co-ordinates r, θ, λ, there is no dependence on the azimuthal angle λ because of axial symmetry, and the required solution of (13) may be written as

$$
\begin{equation*}
g_{0}=\sum_{m=0}^{\infty} a_{m} \chi_{m}(s) P_{m}(\cos \theta), \tag{35}
\end{equation*}
$$

where the a_{m} are constants to be determined,

$$
\begin{equation*}
\chi_{m}(s)=(2 m+1)(\pi / 2 s)^{\frac{1}{2}} K_{m+\frac{1}{2}}(s), \tag{36}
\end{equation*}
$$

and P_{m} denotes the Legrendre polynomial of degree m. Since

$$
e^{-s \cos \theta}=\sum_{m=0}^{\infty}(-1)^{m}(2 m+1)(\pi / 2 s)^{\frac{1}{2}} I_{m+\frac{1}{2}}(s) P_{m}(\cos \theta),
$$

the boundary condition corresponding to (18) gives

$$
\begin{equation*}
a_{m}=(-1)^{m} \frac{I_{m+\frac{1}{2}}\left(s_{0}\right)}{K_{m+\frac{1}{2}}\left(s_{0}\right)} . \tag{37}
\end{equation*}
$$

The equation corresponding to (20) is

$$
\begin{equation*}
\left(\nabla^{2}-\alpha^{2} k^{2}\right) g_{1}=2 k^{2} \sum_{m=0}^{\infty} A_{m} \chi_{m}(s) P_{m}(\cos \theta), \tag{38}
\end{equation*}
$$

where

$$
A_{m}=(-1)^{m+1}\left[K_{m+\frac{1}{2}}^{\prime}\left(s_{0}\right)+\frac{K_{m+\frac{1}{2}}\left(s_{0}\right)}{2 s_{0}}\right]\left[s_{0} K_{m-\frac{1}{2}}\left(s_{0}\right) K_{m+\frac{1}{2}}\left(s_{0}\right) K_{m+\frac{3}{2}}\left(s_{0}\right)\right]^{-1} .
$$

The required solution of (38), vanishing at the surface of the sphere and at infinity, is

Since

$$
\begin{gather*}
g_{1}=\frac{i P}{2 h} \sum_{m=0}^{\infty} A_{m}\left[\chi_{m}(s)-\frac{\chi_{m}\left(s_{0}\right)}{\chi_{m}\left(\alpha_{0}\right)} \chi_{m}(\alpha s)\right] P_{m}(\cos \theta) . \tag{39}\\
e^{s \cos \theta} P_{m}(\cos \theta)=\sum_{n=0}^{\infty} e_{m n}(s) P_{n}(\cos \theta),
\end{gather*}
$$

where

$$
\begin{aligned}
& e_{m n}(s)=(2 n+1) \sum_{r=0}^{\infty} \frac{(2 r)!(2 m-2 r)!(2 n-2 r)!}{(r!)^{2}(2 m+2 n-2 r+1)!}\left[\frac{(m+n-r)!}{(m-r)!(n-r)!}\right]^{2} \\
& \times(2 m+2 n-4 r+1)(\pi / 2 s)^{\frac{1}{2}} I_{m+n-2 r+\frac{1}{2}}(s),
\end{aligned}
$$

it follows that

$$
f_{0}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{m} F_{m n}(s, s) P_{n}(\cos \theta)
$$

where

$$
\begin{equation*}
F_{m n}(\xi, \eta)=\chi_{m}(\xi) e_{m n}(\eta), \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1}=\frac{i P}{2 h} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m}\left[F_{m n}(s, s)-\frac{\chi_{m}\left(s_{0}\right)}{\chi_{m}\left(\alpha s_{0}\right)} F_{m n}(\alpha s, s)\right] P_{n}(\cos \theta) . \tag{41}
\end{equation*}
$$

The heat flux from the surface of the sphere is

$$
Q=-\int_{0}^{\pi} \lambda\left(\frac{\partial T}{\partial r}\right)_{r=a} 2 \pi a^{2} \sin \theta d \theta
$$

and the Nusselt number, defined as
is given by

$$
C_{q}=\frac{Q}{4 \pi a^{2}\left[\lambda\left(T_{w}-T_{\infty}\right) / 2 a\right]},
$$

$$
C_{q}=-k a \int_{-1}^{1}\left(\frac{\partial f}{\partial s}\right)_{s=s_{0}} d(\cos \theta)
$$

$4 h / P$	0.1	0.2	0.4	0.6	0.8	1.0
m	0.999	0.996	0.986	0.970	0.952	0.931
δ°	1.43	2.85	5.59	8.15	10.49	12.62
				TaBLE 3		

Hence

$$
\begin{equation*}
C_{q}=C_{q 0}+\epsilon e^{i \omega l} C_{q 1}, \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{q 0}=\frac{\pi}{s_{0}} \sum_{m=0}^{\infty}(2 m+1)(-1)^{m} \frac{I_{m+\frac{1}{2}}\left(s_{0}\right)}{K_{m+\frac{1}{2}}\left(s_{0}\right)}, \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{q 1}=-\frac{i \pi P}{2 h} \sum_{m=0}^{\infty}(2 m+1) A_{m} I_{m+\frac{1}{2}}\left(s_{0}\right) K_{m+\frac{1}{2}}\left(s_{0}\right)\left[\frac{K_{m+\frac{1}{2}}^{\prime}\left(s_{0}\right)}{\bar{K}_{m+\frac{1}{2}}\left(s_{0}\right)}-\frac{\alpha K_{m+\frac{1}{2}}^{\prime}\left(\alpha s_{0}\right)}{K_{m+\frac{1}{2}}\left(\alpha s_{0}\right)}\right] . \tag{44}
\end{equation*}
$$

As before, we must restrict attention to small values of the arguments of the Bessel functions, and we obtain

$$
\begin{align*}
& C_{q 0}=2+4 \beta+O\left(\beta^{2}\right) \tag{45}\\
& C_{q 1}=-\frac{2 i P}{h}(\alpha-1) \beta+O\left(\beta^{2}\right) . \tag{46}
\end{align*}
$$

We have not included terms $O\left(\beta^{2}\right)$ because they are likely to be modified when the neglected convection terms are brought back into the energy equation. The quasi-steady value of $C_{q 1}$ is
and so

$$
\begin{gathered}
C_{q 1}^{*}=4 \beta \\
\frac{C_{q 1}}{C_{q 1}^{*}}=m e^{-i \delta}=-\frac{i P}{2 h}(\alpha-1) .
\end{gathered}
$$

This is a function of h / P only, and the values of m and δ for the same range of values of h / P as were used for the circular cylinder are given in Table 3.

REFERENCES

Kaplun, S. 1957 J. Math. Mech. 6, 595-603.
Lamb, Sir Horace 1932 Hydrodynamics, 6th edition. Cambridge University Press.
Watson, G. N. 1944 Theory of Bessel Functions, 2nd edition. Cambridge University Press.

